
DISTRIBUTED HIERARCHICAL EVENT MONITORING FOR SECURITY
ANALYTICS

by

Mohiuddin Ahmed

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2024

Approved by:

Dr. Jinpeng Wei

Dr. Bei-Tseng Chu

Dr. Yongge Wang

Dr. Yasin Raja

ii

©2024
Mohiuddin Ahmed

ALL RIGHTS RESERVED

iii

ABSTRACT

MOHIUDDIN AHMED. Distributed Hierarchical Event Monitoring for Security
Analytics. (Under the direction of DR. JINPENG WEI)

The unprecedented increase in the number and sophistication of cyber-attacks (e.g.,

advanced persistent threats or APTs) has called for effective and efficient threat-

hunting techniques and robust security defenses. Various events (host level or network

level) can be readily captured today. Analyzing such events can offer great insights

into both ongoing attacks and the security posture of the system under protection.

This dissertation presents a distributed hierarchical event monitoring agent architec-

ture to facilitate two important aspects of cyber defense: efficient threat hunting and

the enforcement assessment of critical security controls (CSCs).

Efficient and Scalable Threat Hunting. Although the end hosts and net-

working devices can record all benign and adversarial actions and use them for threat

hunting, it is infeasible to monitor everything. The existing centralized threat-hunting

approach continuously collects monitored logs and transfers them to the central server,

which incurs high memory usage and communication overhead and thus creates scala-

bility issues on the monitored network. Besides, single event matching on the end-host

devices to detect attacks generates false alerts, causing the alert fatigue problem. To

overcome the limitations of existing tools and research works (i.e., monitoring ev-

erything, memory requirement, communication overhead, and many false alerts), we

present a distributed hierarchical monitoring agent architecture in this dissertation.

This architecture detects attack techniques at the agent level, classifies composite and

primitive events, and disseminates detected attack techniques or subscribed event in-

formation to the upper-level agents or managers. This solution advances the current

methodologies in threat hunting through the adoption of hierarchical event filtering-

based monitoring, significantly enhancing the scalability of monitoring tasks and re-

iv

ducing memory usage and communication overhead without compromising the accu-

racy of the state-of-the-art centralized threat-hunting approaches. Our evaluation of

both simulated attack use cases and the DARPA OpTC attack dataset shows that

the proposed approach reduces communication overhead by 43% to 64% and mem-

ory usage by 45% to 60% compared with centralized threat-hunting approaches while

enabling local decision-making and maintaining the same accuracy of threat-hunting

by state-of-the-art centralized approaches.

CSC Enforcement Assessment. Organizations like NIST and CIS (Center for

Internet Security) provide cyber security frameworks (CSF) and critical security con-

trols (CSCs) as best practice guidelines to enforce cybersecurity and defend against

attacks. These guidelines use well-defined measures and metrics to validate the en-

forcement of the CSCs. However, analyzing the implementations of security products

to validate CSC enforcement is non-trivial. First, the guidelines are not fixed in

order to adapt to the evolution of attack techniques. Second, manually developing

measures and metrics to monitor and implementing those monitoring mechanisms are

resource-intensive tasks and massively dependent on the security analyst’s expertise

and knowledge. To tackle those problems, we use large language models (LLMs)

as a knowledge base and reasoner to extract measures, metrics, and detailed steps

of the monitoring mechanism implementation from CSC descriptions to reduce the

dependency on human expertise. Our approach used few-shot learning with chain-of-

thought prompting to generate measures and metrics, and then generated knowledge

prompting for metrics implementation on top of our distributed hierarchical monitor-

ing agent architecture. Our evaluation shows that using LLMs to extract measures

and metrics and monitoring implementation mechanisms can reduce dependency on

humans and semi-automate the extraction process. We also demonstrate metric im-

plementation steps using generated knowledge promoting with ChatGPT.

v

ACKNOWLEDGEMENTS

My gratitude extends to all the collaborators and committee members whose curios-

ity, insights, and support were instrumental in completing this dissertation. Special

thanks to my advisor, Dr. Jinpeng Wei, for his invaluable help in broadening my

understanding of research within the security field, his proactive guidance, and his

commitment to fulfilling the milestones of my Ph.D. research. I am also grateful to

Dr. Ehab Al-Shaer for his mentorship throughout my Ph.D. career and for providing

valuable perspectives on my dissertation topics. My appreciation also goes to Dr.

Bill Chu and Dr. Yongge Wang for their feedback.

Above all, I sincerely appreciate my wife, Dr. Nasheen Nur, for her reliable support

and patience throughout my doctoral journey. This achievement would not have been

possible without the unwavering support of my amazing family and friends.

vi

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

CHAPTER 1: Introduction 1

1.1. Motivation 4

1.2. System Overview 5

1.3. Research Challenges 7

1.4. Our Contributions 8

1.5. Thesis Outline 11

CHAPTER 2: Background Knowledge 12

2.1. Event Tracing for Windows (ETW) 12

2.2. Centralized Log Monitoring Agent Infrastructure and SPLUNK 13

2.3. MITRE ATT&CK Framework 14

2.4. Critical Security Controls 15

2.5. LLM and Prompt Engineering 16

CHAPTER 3: SCAHunter: Scalable Threat Hunting through Decentral-
ized Hierarchical Monitoring Agent Architecture

18

3.1. Introduction 18

3.2. Related Works 24

3.3. Problem Formalization 25

3.4. Distributed Hierarchical Monitoring Agent Architecture
Overview

30

3.4.1. Console Agent (CA) or Manager 31

vii

3.4.2. Composite Event Detector Agent (CEDA) 32

3.4.3. Event Filtering Agent (EFA) 32

3.4.4. Agent Communication Protocol 33

3.4.5. ESR Decomposition and Agent Hierarchy Generation. 35

3.4.6. Distributed Hierarchical Monitoring Use Case Demon-
stration

38

3.5. Implementation and Evaluation 40

3.5.1. Implementation Details 40

3.5.2. Evaluation 42

3.6. Static ESP rule generation for Attack Signature 50

3.7. Conclusion, Limitations and Future Work 53

CHAPTER 4: Prompting LLMs to Enforce and Validate CIS Critical
Security Controls

55

4.1. Introduction 55

4.2. Related Works 60

4.3. Overview of the CSC Validation 62

4.3.1. CSC Ontology 63

4.3.2. KMI and KEI Extraction and Measurement: Manual
Approach

64

4.3.3. KMI and KEI Extraction and Measurement: Prompt-
ing the LLM

66

4.3.4. CSCMonitor: Hierarchical Monitoring of Extracted
Measures

69

4.4. CSC enforcement validation using Prompt engineering: a case
study

70

viii

4.5. Evaluation 75

4.5.1. Metric Implementation Demonstration using LLM 81

4.6. Conclusion and Discussion 85

CHAPTER 5: Conclusions 88

REFERENCES 91

APPENDIX A: 97

A.1. CSC Safeguard 97

ix

LIST OF TABLES

TABLE 4.1: Human and LLM-generated Measures and Metrics for Safe-
guard 5.1

87

TABLE 4.2: Measures and Metrics for CSC 5.3 generated by LLM 87

TABLE A.1: CSC safeguard from version 8 and sub-control from version
7

98

x

LIST OF FIGURES

FIGURE 1.1: System Overview 6

FIGURE 2.1: ETW Architecture 12

FIGURE 3.1: Distributed Hierarchical Monitoring Agent Architecture 30

FIGURE 3.2: Generated agent hierarchy 38

FIGURE 3.3: Implementation of distributed hierarchical monitoring agent
architecture

41

FIGURE 3.4: Low-level Attacker Activities in OpTC Dataset 43

FIGURE 3.5: Performance and Scalability Evaluation of hierarchical mon-
itoring agent architecture based on Simulated Attack Use Cases

45

FIGURE 3.6: Performance and Scalability Evaluation of hierarchical mon-
itoring agent architecture based on OpTC Attack Dataset

46

FIGURE 3.7: Data source to technique coverage 48

FIGURE 4.1: CSC validation approach 62

FIGURE 4.2: CSC Ontology 67

FIGURE 4.3: CoT prompting flow 69

FIGURE 4.4: Zero-shot prompting for CSC Ontology 71

FIGURE 4.5: CoT prompting for CSC Ontology 72

FIGURE 4.6: CoT prompting for Measures and Metrics 73

FIGURE 4.7: Generated knowledge prompting for Metric Implementation 74

FIGURE 4.8: Evaluation of generated Metrics and Measures with LLM 75

FIGURE 4.9: Prompting to evaluate Measures and Metrics 78

xi

FIGURE 4.10: Semantic Similarity, Novelty, Correctness evaluation be-
tween LLM-generated and human-labeled metrics, and Correlation
between human evaluation and LLM evaluation (all the evaluation
done with ChatGPT-3.5)

78

FIGURE 4.11: Generated knowledge prompting for dormant account de-
tection implementation

82

xii

LIST OF ABBREVIATIONS

CA Console Agent.

CEDA Composite Event Detector Agent.

CIS Center for Internet Security.

CSC Critical Security Control.

CSF Cyber Security Framework.

EFA Event Filtering Agent.

LLM Large Language Model.

NIST National Institute of Standards and Technology.

CHAPTER 1: Introduction

Recent years have witnessed a surge in cybersecurity threats, including the emer-

gence of advanced persistent threats (APTs) [1], characterized by a level of sophis-

tication that is unparalleled in history [2]. The Sophos threat report indicates a

significant rise in APTs and ransomware incidents, jumping from 37% in 2020 to 78%

in 2021 [3]. These threats employ a variety of attack methodologies and innovative

procedures, often involving multiple steps to compromise a target. For instance, one

common approach involves the use of spear phishing emails [4] to gain initial access,

followed by drive-by download attacks [5] to exploit vulnerabilities, and exfiltration

of sensitive data from the breached system [6, 7]. Interestingly, even benign pro-

grams can be manipulated by attackers to launch these sophisticated campaigns [8].

These types of cyber attacks successfully circumvent signature-based intrusion detec-

tion systems by leveraging zero-day vulnerabilities, exploiting trusted applications,

and utilizing threat emulation tools like Metasploit, Cobalt Strike, and Mimikatz.

Adopting stealthy tactics, these attacks aim to remain under the radar of anomaly

detection systems while pursuing objectives such as data exfiltration and encryption.

The intricate and expansive nature of organizational networks, coupled with the

labor-intensive process of investigating attacks, allows attackers to maintain a pres-

ence within systems for prolonged periods. Mandiant’s research highlights that the

global average duration before detection of such threats is 24 days [9], with the im-

pact on organizations increasing dramatically the longer attackers go undetected.

According to IBM’s security report, the financial repercussions of data breaches from

ransomware attacks escalated from $3.86 million in 2020 to $4.24 million in 2021,

with breaches taking an average of 287 days to be identified and contained [10]. This

2

lengthy detection timeframe underscores the inadequacy of traditional intrusion de-

tection systems (IDS) in facilitating prompt and effective threat identification.

To combat these threats, an array of monitoring tools have been deployed to detect

and log such malicious activities [11, 12], with the resultant data being stored as

logs on the endpoint devices. Several methodologies and tools for centralized and

distributed monitoring have been suggested in the literature (e.g., [13, 14, 15, 16, 17]).

Despite their specific design intentions and goals, these solutions often fall short in

terms of scalability for distributed environments and lack the necessary adaptability to

accommodate diverse monitoring requirements. The limitations of these approaches

are notable: some are designed exclusively for analyzing network traffic [15], others

are tailored towards network fault diagnosis [17, 13], existing threat hunting tools

are required to monitor everything in the system, and single event matching may

create the alert fatigue problem by generating an enormous amount of false alerts. In

addition to these tools, several security frameworks and guidelines, such as the NIST

Cybersecurity Framework (CSF) and the Center for Internet Security (CIS) Critical

Security Controls (CSC), have been developed to fortify systems against such threats.

These frameworks recommend strategies such as benchmarking system configurations

or analyzing system-generated event logs to ascertain the implementation and efficacy

of security controls within an organization’s IT infrastructure.

Critical Security Controls (CSCs) are extensively adopted by organizations of var-

ious sizes, and an expanding corpus of research addresses their application and rein-

forcement. A principal obstacle in deploying the CIS CSCs lies in the meticulous and

thorough enforcement and implementation of these controls, a process known to be

intricate and demanding substantial time investment. It is vital to have a comprehen-

sive grasp of the controls, the procedural steps for their deployment to be established,

and continuous assessment of the CSC enforcement quality.

There is a scarcity of support available to facilitate the adoption and reinforcement

3

of the CIS CSCs. Though the CIS offers a range of tools and resources, including a self-

evaluation questionnaire, a detailed checklist, and a guide for implementation [18, 19],

there has been no research on assessing the enforcement quality of those tools. Addi-

tionally, various third-party vendors provide tools and services designed to assist in

the effective implementation and enforcement of these controls [20, 21]. Following the

implementation of the CIS CSCs, it is imperative to undertake validation exercises

such as vulnerability assessments, penetration testing, and security audits to ascer-

tain the effectiveness and correct application of the controls. Although guidelines

exist for the CSC’s implementation assessment, studies focusing on the evaluation of

enforcement strategies remain scarce [22].

In this dissertation, we present SCAHunter: a distributed hierarchical event moni-

toring approach that can be used for attack technique detection at lower level (agent

level) and TTPs (Tactics, Techniques, and Procedures) detection at the higher level

(manager level), and assessment of the CSC enforcement quality. Our SCAHunter de-

tects attacks with the same accuracy as the state-of-the-art centralized threat-hunting

approaches while reducing communication overhead by 43% to 64% and memory usage

by 45% to 60% compared with centralized threat-hunting approaches. We also present

an LLM (Large Language Model) prompting approach to automate measure and met-

rics generation, and measure and metrics implementation steps extraction from the

CIS CSC descriptions. For the automated generation of measures, metrics, and im-

plementation, we prompt LLM with few-shot prompting, chain-of-thought promoting,

and generated knowledge prompting. Our evaluation shows that using prompt en-

gineering to extract measures, metrics, and monitoring implementation mechanisms

can reduce dependency on humans and semi-automate the extraction process., and

LLM-generated measures and metrics align with human-generated measures and met-

rics.

4

1.1 Motivation

SCAHunter: Scalable Threat Hunting through a Decentralized Hier-

archical Monitoring Agent Architecture (Chapter 3). Within organizations,

numerous indicators of security incidents may be overlooked on a daily basis. These

indicators are primarily identified through examining network behaviors or analyzing

computer security event logs. It is crucial to analyze these indicators as promptly as

possible to mitigate the impacts of security incidents. However, the prevalent models

for centralized event monitoring and analysis impose significant demands on resources

and exacerbate network communication burdens. This is due to the constant data

exchange between the low-level log collection agents and the central management

console. Furthermore, log management and intrusion detection systems can generate

voluminous data sets. Events correlated across various devices in dispersed system lo-

cations can further complicate analysis. The necessity to monitor numerous endpoint

devices, the presence of multiple sources of event generation within these devices, and

their geographical dispersion in a large-scale distributed system present formidable

challenges, which include enhancing performance, ensuring the monitoring system’s

robustness, and achieving scalability.

Prompting LLMs to Enforce and Validate CIS Critical Security Con-

trols (Chapter 4). CIS critical security controls (CSCs) provide only guidelines

to enforce cyber security. No automated enforcement or measuring mechanisms for

these CSCs have yet been developed. Additionally, analyzing the implementations of

security products to validate the enforcement of CSCs is infeasible. Therefore, it is

quintessential to develop formal- and data-driven approaches and automated tools to

measure the effectiveness and validate the enforcement of CSC deployment. We can

formulate the problem in the following way: a company X has invested in Y products

to implement Z CSCs. Our goal is to identify metrics and measurement procedures to

test and evaluate the quality of CSC enforcement by these products quantitatively.

5

1.2 System Overview

In this section, we present the overview of our whole framework, as shown in

Figure 1.1. The framework consists of the following modules: Event Subscription

Policy Rule Generation, Distributed Hierarchical Agent Monitoring System, Prompt

Engineering to Extract Measures and Metrics, and Prompt Engineering to Extract

Measures and Metrics Implementation. A brief overview of each module is given

below.

Event Subscription Policy (ESP) Rule Generation (Chapter 3). To sup-

port monitoring tasks, we propose an analytical language that will be used in end-host

devices to subscribe for event logs from themselves or other reachable hosts. This lan-

guage also provides support for the correlation of collected logs. A threat hunter first

derives the attack signature from the attack technique description provided in the

MITRE ATT&CK framework and threat reports of interest. Then, the threat hunter

maps the attack signature to the Event Subscription Policy (ESP) rule by using our

analytical language (more details in Chapter 3).

Distributed Hierarchical Agent Monitoring System (Chapter 3). The dis-

tributed hierarchical event monitoring system will take the ESP rule as a subscription

task, decompose it into primitive event monitoring sub-tasks, and distribute them to

the lower-level agents. This monitoring system consists of three types of agents: Event

Filtering Agent, Composite Event Detector Agent, and Console Agent. This event

monitoring system is used for cyber threat hunting and CSC validation (collecting

statistics about specific measures).

• Event Filtering Agent (EFA). EFA monitors different data sources for events

requested in the received event subscription request. Those agents are static

(we generate them initially) and continue to work until they are terminated or

subscription requests are deleted.

6

Figure 1.1: System Overview

• Composite Event Detector Agent (CEDA). A CEDA correlates or detects dif-

ferent events based on the composite event mentioned in the event subscription

tasks (ESP Rules). The hierarchical agent architecture can have multiple levels

of CEDAs. The CEDAs will be generated dynamically based on the subscription

tasks (ESP Rules).

• Console Agent (CA). The CA is the main entry point of our proposed agent

monitoring architecture. It takes subscription tasks (ESP Rules) from the user,

decomposes the task into composite events and primitive events, and generates

appropriate CEDAs and configurations for each agent.

Prompt Engineering to Extract Measures and Metrics (Chapter 4). In

order to assess the enforcement quality of a CSC safeguard, we need a list of measures

and metrics where a measure is a concrete and objective attribute, and a metric

is an abstract and subjective attribute calculated from one or multiple measures.

We leverage the power of Large Language Models (LLMs) to automatically generate

7

the measures and metrics given a CSC safeguard description. Specifically, we first

generate a CSC ontology by using chain-of-thought prompting and then use it to

generate the list of measures and metrics for the corresponding safeguard by using

zero-shot and few-shot prompting.

Prompt Engineering to Extract Measures and Metrics Implementation

(Chapter 4). The measures and metrics generated in the previous module are not

implementable because they require security analyst’s help to determine specific data

sources and attributes to measure. To remove the need for expert knowledge, we

perform additional generated knowledge prompting to generate measure and met-

ric implementation steps. Then, we translate the implementation steps to ESP rules

which will be used in a hierarchical monitoring system to collect corresponding statis-

tics about the metric to validate the corresponding CSC safeguard.

1.3 Research Challenges

This dissertation addresses the following challenges to achieve our research goals.

• On-demand Monitoring: Current studies [23, 24, 25] have aimed at maxi-

mizing data visibility by monitoring an extensive array of sources, an approach

that is not always requisite for identifying TTPs. For instance, in the context

of detecting malware execution via PowerShell using an Endpoint Detection

and Response (EDR) solution, it is not essential to monitor additional data

streams such as registries, processes, or file activities. Focusing solely on Pow-

erShell command activity is sufficient for the detection of PowerShell execution

TTPs [26].

• Event Storage and Communication Overhead: The process of centralized

threat hunting involves the persistent aggregation of monitored logs on a central

server, leading to significant memory consumption and increased communica-

tion overhead for event transmission. Such a methodology poses scalability

8

challenges within the network being monitored.

• Efficient Event Correlation: To identify attacker TTPs, current method-

ologies and investigations [27] employ a strategy of matching individual events

on endpoint devices to trigger alerts. However, this approach of matching single

events tends to produce a high volume of false alerts, leading to a phenomenon

known as alert fatigue within the realm of threat hunting [28]. For instance,

both malicious actors and legitimate users may utilize the TTP of executing

commands through the Windows command shell to run an executable on the

system. Relying solely on matching these single events for detection will result

in numerous erroneous alerts.

• Manual Measures and Metrics Development for CSC Safeguards: The

continual evolution of cyber threats necessitates frequent updates to critical

security controls (CSCs), which require the repetitive manual task of extracting

measures and metrics to align with newly introduced controls. Additionally, the

development of manual measures and metrics heavily relies on security analysts’

expertise and prior knowledge, introducing a significant dependence on their

skills.

1.4 Our Contributions

In this dissertation, to solve the challenges mentioned in section 1.3, we make the

following contributions:

• To overcome the challenges (monitoring everything, memory requirement, com-

munication overhead, and many false alerts) of existing threat-hunting tools

and research works,

– We provide a distributed hierarchical monitoring agent architecture that

optimizes monitoring tasks to reduce resource usage and communication

overhead.

9

– We provide an approximation algorithm to generate a near-optimal agent

hierarchy, so that event correlation tasks are distributed among the hosts.

– We develop an ETW-based agent to monitor signature-specific events so

that on-demand monitoring is supported.

– We demonstrate the threat-hunting process using our proposed agent ar-

chitecture. We evaluated our proposed architecture using log data gener-

ated by running three test scripts provided by Red Canary Atomic Red

Team [29], and we created attack signatures for the test scripts follow-

ing the MITRE ATT&CK technique description during the evaluation.

We also evaluated our proposed approach using DARPA OpTC attack

dataset [30]. To compare our approach with the existing centralized event

monitoring approaches for threat hunting, we also implemented centralized

event monitoring using Splunk.

• To solve challenges of automating measures and metrics development and reduc-

ing dependency on security analyst’s expertise and prior knowledge, we make

the following contributions:

– We propose a CSC safeguard ontology for the things to be extracted from

each safeguard description. We provide a prompting template used to

extract CSC safeguard ontology where CSC ontology will help develop a

chain-of-thought (CoT) prompt to extract implementation steps for a CSC

safeguard enforcement.

– We provide a few-shot prompt to extract measures and metrics given the

safeguard description and dependent safeguard. This prompt generates

new measures and metrics for safeguard enforcement compliance and safe-

guard enforcement quality.

– We provide a prompting template for evaluating LLM-generated measures

10

and metrics to reduce human labor on manual evaluation where a differ-

ent LLM is used for evaluation. With the help of Spearman, Pearson,

and Kendall Tau’s correlation coefficient value, we showed that the LLM

evaluation aligns with human evaluation.

– We demonstrate CSC safeguard enforcement implementation for multiple

measures and metrics of a safeguard with the help of CoT prompting and

generated knowledge prompting.

The dissertation is based upon the following papers:

• Mohiuddin Ahmed, Jinpeng Wei, Ehab Al-Shaer. 2023. “SCAHunter: Scalable

Threat Hunting Through Decentralized Hierarchical Monitoring Agent Archi-

tecture.” In: Arai, K. (eds) Intelligent Computing. SAI 2023. Lecture Notes in

Networks and Systems, vol 739. Springer, Cham. https://doi.org/10.1007/978-

3-031-37963-5_88.

• Mohiuddin Ahmed, Ehab Al-Shaer. 2019. “Measures and Metrics for the En-

forcement of Critical Security Controls: a Case Study of Boundary Defense.” In

Proceedings of the 6th Annual Symposium on Hot Topics in the Science of Secu-

rity (Nashville, Tennessee, USA) (HotSoS ’19). Association for Computing Ma-

chinery, New York, NY, USA, Article 21. https://doi.org/10.1145/3314058.331

7730.

• Mohiuddin Ahmed, Jinpeng Wei, and Ehab Al-Shaer. 2024. Prompting LLM

to Enforce and Validate CIS Critical Security Control. In Proceedings of the

29th ACM Symposium on Access Control Models and Technologies (SACMAT

2024), May 15-17, 2024, San Antonio, TX, USA. ACM, New York, NY, USA.

https://doi.org/10.1145/3649158.3657036.

11

1.5 Thesis Outline

The remainder of the dissertation is organized as follows:

Chapter 2 reviews critical background knowledge crucial to understand the disser-

tation, including existing event monitoring tools and approaches, cyber threat hunt-

ing using MITRE ATT&CK framework, security best practices: CIS critical security

controls, and prompt engineering to extract information from text descriptions.

Chapter 3 presents SCAHunter, a distributed hierarchical agent monitoring archi-

tecture that is used for efficient and scalable cyber threat hunting.

Chapter 4 presents our manual and prompting approaches with LLMs to extract

measures and metrics and corresponding implementation steps to assess the enforce-

ment of security best practices.

Chapter 5 summarizes our contributions, findings, and limitations.

CHAPTER 2: Background Knowledge

In this chapter, we present existing tools and approaches used in agent monitoring

and threat hunting. Moreover, we also provide an overview of existing CSC validation

tools.

2.1 Event Tracing for Windows (ETW)

ETW [31] provides a mechanism to collect and store events generated by user-mode

applications and kernel-mode drivers. Windows OS provides ETW as a fast, reliable,

versatile event-tracing feature. Similar logging mechanisms exist in other operating

systems, such as audit.d for Linux systems. In this dissertation, we use ETW for event

collection from Windows OS. ETW consists of four components: 1) ETW Provider,

2) ETW Consumer, 3) ETW Session, and 4) ETW Controller, as shown in Figure 2.1.

ETW Provider is the conceptual agent responsible for generating and writing events

into an ETW Session. When integrating a software component with ETW, an ETW

Provider is established to detail the events it generates. During registration, the ETW

Provider assigns a unique provider ID to ETW. After registering an ETW provider

Figure 2.1: ETW Architecture

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	System Overview
	Research Challenges
	Our Contributions
	Thesis Outline

	Background Knowledge
	Event Tracing for Windows (ETW)
	Centralized Log Monitoring Agent Infrastructure and SPLUNK
	MITRE ATT&CK Framework
	Critical Security Controls
	LLM and Prompt Engineering

	SCAHunter: Scalable Threat Hunting through Decentralized Hierarchical Monitoring Agent Architecture
	Introduction
	Related Works
	Problem Formalization
	Distributed Hierarchical Monitoring Agent Architecture Overview
	Console Agent (CA) or Manager
	Composite Event Detector Agent (CEDA)
	Event Filtering Agent (EFA)
	Agent Communication Protocol
	ESR Decomposition and Agent Hierarchy Generation.
	Distributed Hierarchical Monitoring Use Case Demonstration

	Implementation and Evaluation
	Implementation Details
	Evaluation

	Static ESP rule generation for Attack Signature
	Conclusion, Limitations and Future Work

	Prompting LLMs to Enforce and Validate CIS Critical Security Controls
	Introduction
	Related Works
	Overview of the CSC Validation
	CSC Ontology
	KMI and KEI Extraction and Measurement: Manual Approach
	KMI and KEI Extraction and Measurement: Prompting the LLM
	CSCMonitor: Hierarchical Monitoring of Extracted Measures

	CSC enforcement validation using Prompt engineering: a case study
	Evaluation
	Metric Implementation Demonstration using LLM

	Conclusion and Discussion

	Conclusions
	REFERENCES
	
	CSC Safeguard

